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Superposition States Through Correlations of the 
Second Kind 
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We introduce model systems, embedded in R 2, for joint systems consisting of 
two entangled spin-l/2 entities in superposition states: one in a symmetric 
superposition state, one in an antisymmetric superposition state. We study these 
model systems and compare them with a model system for a spin-I quantum 
entity. All this leads to a new way of looking at the tensor product of Hilbert 
spaces within the context of quantum mechanics, and thus also to a new approach 
for the description of joint systems in quantum mechanics. 

I. INTRODUCTION 

Aerts (1981, 1994) showed that the joint system of two separated quan- 
tum entities cannot be described as the projection lattice of the tensor product 
[for more details on this problem, see Aerts (1981), Piron (1990), and Van 
Fraasen (1991)]. As a consequence, alternative descriptions of joint systems 
should be reconsidered. Aerts (1991) presents a model system for an Aspect- 
like experiment on a quantum system in a singlet state. In this model system, 
he introduces the concept of correlations of the second kind, i.e., correlations 
created during the measurement process. 

In this paper we introduce two models, embedded in R 3, for joint systems 
consisting of two entangled spin-l/2 entities in a superposition state: one in 
a symmetric superposition and one in an antisymmetric superposition (this 
model system for an entity in an antisymmetric superposition state is very 
much related to Aerts' model system for an Aspect-like experiment). Of 
course, since we only consider spin-1/2 entities, due to the fermionic superse- 
lection rule, the symmetric superposition has no real meaning within the 
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context of quantum mechanics. Still, from a structural point of view, this 
model creates new insights into how states described in a tensor product of 
two Hilbert spaces can be realized in a mechanistic way. These structural 
aspects get more interesting when we compare these models with some 
models for other superposition states and with a model for a spin-1 entity in 
which we encounter again a joint system of two entangled spin-1/2 quantum 
entities on which we introduce correlations of  the second kind [this model 
system is introduced in Coecke (1995a)]. 

We also mention that these correlations of the second kind introduce no 
new probabilistic aspects: the probabilistic nature of the joint system is due 
to the probabilistic nature of  the composing entities. Thus, if the entities are 
classical mechanistic, then the joint system is classical mechanistic too, and, 
since it is possible to build classical mechanistic models for spin-l/2 entities 
(see, for example, Aerts, 1991; Coecke, 1995b), the models that we present 
in this paper prove the existence of  classical mechanistic models for spin-t 
entities and for joint systems in symmetric or antisymmetric states. Nonethe- 
less, the main aim of  this paper is structural characterization of  new states 
that occur due to the tensor product, independent of a possible explanation 
of  the origin of the quantum probabilities. 

In Section 2 we present a representation of  a spin-l/2 quantum entity 
on the Poincar6 sphere which we need in all the models that we introduce 
in this paper. In Section 3 we introduce the model system for an entity in a 
symmetric or an antisymmetric superposition state. In Section 4 we introduce 
a similar model system for the other superposition states, and in Section 5 we 
briefly describe the model system for a spin- 1 quantum entity, as introduced in 
Coecke (1995a). In Section 6 we study these model systems in more detail 
and present an alternative way of  looking at the states encountered in quantum 
mechanics, which are described in tensor products of  Hilbert spaces. 

2. R E P R E S E N T A T I O N  OF  A SPIN- l /2  Q U A N T U M  E N T I T Y  

In this section, we represent the states of  a spin-l/2 quantum entity on 
a sphere S. Consider a setup with two Stern-Gerlach apparata: one in which 
we prepare the entity in a certain state, and a second one in which we measure. 
Clearly, the transition probabilities depend only on the relative position of  
the two apparata. Thus, we can represent the measurement by the Euler 
angles oL, [3, 3' (Fig. 1). 

We denote a measurement characterized by c~, [3, ~/as e,,~. r If  the initial 
state corresponds to a spin quantum number s = + 1/2, we denote it as 
pO, and if it corresponds to a spin quantum number s = - 1/2, we denote it 
as p0_. We represent pO by the vector ~o = (1, 0) E C 2 and pO by ~o = (0, 1) 
E C 2. The eigenstates corresponding to a measurement e~.~,~ are the same 
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Fig. l, The angle at represents a first rotation around the direction of the magnetic field. This 
rotation determines the direction in which we turn with an angle 13. Finally, we rotate again 
around the direction of the magnetic field (represented by the angle 3'). 

as the ones we obtain when we rotate the initial states by an active rotation 
characterized by the Euler  angles a ,  13, "/. This active rotation is represented 
by a unitary operator  acting on C 2 that corresponds to the following matrix 
(Wigner, 1959): 

(ei2cos  ei 2sin  1 

Thus, for the measurement e,~.~.~ we have a set of eigenstates represented by 
the following vectors: 

The vectors in equations (2) and (3) that correspond to different values o f  "y 
(for f ixed e~ and 13) represent the same states. As a consequence,  we omit  
the superscript ~ in the notations for the vectors and the measurements.  We 
represent the states corresponding to the vectors in equations (2) and (3), 
respectively, by p~'~ and p~_'~. Thus we have p0:0 = pO and p0_.o = pO. We 
also have 

p~_.~ = p~_+~.~-~ (4) 

We denote the probabili ty to obtain a state p~_.t~ in a measurement  e~.13 on an 
entity in a state pO+ as ~+'~+, and the probability to obtain p~_'~ in a measurement  
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e,~.f~ on an entity in a state pO as ~+'~_. Analogously we define /x,_,~+ and 
P"_'~_. We have 

~+,~+ = [(llj0 + 111/~,13) 12 = COS2 13 - -  1 + c o s  13 
2 2 

p~,~ _ 1 + cos 13 
2 

~+,~ = /x,_,~+ = sin 2 13 _ 1 - cos 13 
' ' 2 2 

The set of  states of  a spin-l/2 entity is given by [see equation (4)] 

~1/2 = {P'~'lSla • [0, 2"rr], 13 • [0, ~r]} (5) 

Let S be a unit sphere in R 3 with its center at the origin. We represent every 
state p'~'~ • Z~n by the point in S with coordinates (cos e~ sin [3, sin e~ sin 
[3, cos 13). It is clear (as a consequence of  the definition of  the Euler angles) 
that the representation of  ~ /2  in S is one-to-one and onto. 

3. A M O D E L  S Y S T E M  F O R  S U P E R P O S I T I O N  STATES 

In this section, we present two model systems for measurements on a 
joint system consisting of  two spin-l/2 quantum entities in a superposifion 
state [for more details on this kind of measurement see Aerts (1991)]: 

• Before the measurement, we have a joint system consisting of two 
entangled spin-l/2 entities (denoted as S°l and SO2) in a superposi- 
tion state. 

• Then we perform a measurement that consists in performing one 
measurement on each of both spin-1/2 entities. 

• After the measurement, we have a joint system consisting of  the two 
separated spin-1/2 entities SO~ and SO2- 

First we briefly repeat how such a measurement is described in ordinary 
quantum mechanics. The measurements consist in the performance of  two 
spin-l/2 measurements on the two spin-t/2 entities of  a joint system. If  the 
measurement on SO~ is e.,~ and if the measurement on SO2 is e~,, ~,, we denote 
the measurement on the joint system as e~,,~,,~,.~, (we use the notations intro- 
duced in Section 2, and again one easily verifies that we are allowed to omit 
the index ~). The eigenstates of  e~,~ are represented by the vectors t~_'~ and 
t~_ '~ in C 2 and the eigenstates of e,~,,~, by ~_"~' and ~_"~'. Thus, according 
to orthodox quantum mechanics, the possible eigenstates of e,~,f~,o,',v, denoted 
by, p?_'~4 ~''fr, p?_,~.;,~'.fr, p~,~4y'.l~', and p~.~=,~'.ls', are represented by ~?,13 ® 
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+7_',n', q/~_,l~ ® q/7_',13', q/],13 ® q/~,13', and q/L.13 ® ~'!',~', which are all vectors in 
C 2 ® C 2 = C 4. The two superposition states that we consider as initial states 
are an ant isymmetric  and a symmetric  linear combinat ion of  product  states, 
denoted as Pl and P2. They are represented by the following vectors in C 4 
(again we use notations o f  Section 2): 

1 q/o q/o_ q/, = _ ~  (q/o ® _ ® q/o) (6) 

1 q/o_ q/o_ q/z = - ~  (q/o ~) + ® q/o+) (7) 

For an initial state Pl, we  denote the probabil i ty to obtain p~'~."'.~' in the 
measurement  e~,13,.,f 3, as p?.~,<,],13', and for an initial state P2 we denote it as 
~;~+:,~,t3'. Analogously  we  define P?r~+' `'-'n', p?:~_~.f3', p?:B_,f_.l~', p72;~+,~_',t3', 
/~2?_B'~ ,13', and P~2:_&f "I3'. We have 

~.~+~5)13' = i<q/llq/~,l 3 ® q/9_',i~')i 2 

= 1 (q/o ® q/0 i q/~_,13 ® q/~_',ly) _ ~ (q/0_ ® q/0+ I~,_,B ® ~,~_'.13') 

1 D 
2 

1 
2 

1 
2 

1 

1 
4 

I (~  ° I ~_ ,~ ) (~  °_ I ~_',~') - ( ~ o  j ~ , ~ ) ( q / o  I ~ . ' ,~')  12 

C O S - ~  2 t3' e-iOU2 cos ~ ei,~'/2 sin-~ - e,~U2 sin ~ e-,,~'/2 

cos2 ~ sin2-~ - -  2 cos(oc - oC) cos ~ cos 

+ s i n ~ c o s ~ ]  

1 + cos 13 1 - cos 13' cos (a  - ix') sin 13 sin 13' 
2 2 2 

13' ~ 13' -~- sin sin -~- 

+ 
7 

1 - cos 13 1 + cos 13'/ 
] 2 2 

(1 - cos [3 cos [3' - cos(a  - o~') sin ~ sin 13') 

=41 (1  - c o s B , )  = ~ s m - ~ -  

where we have introduced the following notation: 

cos ~1 = cos(~x - cd) sin [3 sin 13' + cos [3 cos 13' (8) 
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If  we also introduce the notation 

cos 82 = cos(or - ~x') sin 13 sin 13' - cos 13 cos 13' 

we easily find (along the same lines as the calculation of/~'1;+~'% '13') 

= = 1_ s i n  8 ,  
2 2 

(9) 

(1o) 

1 81 (11) c°s2 

1 82 
- cos 2 - -  (12) 
2 2 

1 ~2 (13) sin2 ~- 

After  the measurement,  we have a joint  system consisting o f  two separated 
spin- l /2  quantum entities, and thus its states can be described in S × S. 

In accordance with the representation introduced in the previous section, 
we represent -"  13 ~' lr p ; ' ;  ' by a couple  consist ing o f  two points with respective 
coordinates (cos ot sin 13, sin a sin 13, cos 13) and (cos a '  sin 13', sin a '  sin 
13', cos 13'), p~.~._,,'.fr by a couple  o f  points with respective coordinates  (cos 
c~ sin 13, sin a sin 13, cos 13) and ( - c o s  a '  sin 13', - s i n  a '  sin 13', - c o s  13'), etc. 

Now we introduce a model system with the same description as the 
above quantum entities. Consider  two points v and - v  located on a sphere, 
which give (0, 0, 1) and (0, 0, - 1) as coordinates.  We introduce the measure-  
ment et.u,u' on this entity in the fol lowing way (Fig. 2): 

• We consider the system as a joint  system o f  two spin-1/2 quantum 
entities, one o f  them in a state p,,, the other  in a state P-v-  

u=(O,O,/) 

,, =(-~,.t~,-,~) ~ _ ~  

-v=(O,O,-1) 
Fig. 2. Illustration o f  the measurements  eu.u, on the joint sys tem in a state described as 

, ,  = (~ /45 ) ( , o  ® ~o_ _ ,1,o_ ® ~o). 
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• On one o f  these two entities, we  per form a measurement  e .  (we 
consider  measurements  on sp in - l /2  quantum entities as they are 
descr ibed in Sect ion 2). Let  u = (ul, u> u3). If, as a consequence  o f  
this measurement ,  we obtain p . ,  then the state o f  the other entity 
changes  to p~,, where v'  = ( - u l ,  - u g ,  - u 3 ) ;  if  we obtain p_,,, the 
state changes  to p_~,. 

• We per fo rm the measurement  e,,, on the other  entity (the order  o f  e .  
and e,,, makes  no difference for the probabil i t ies  of  the different 
outcomes) .  

We introduce the measuremen t  eg,.,., in the same way  as el .... ,, with one 
difference: we  replace v' = ( - u l .  -Ug,  - u 3 )  by v' = (ul,  u2, - u s )  (Fig. 3). 

Denote  by 13 the angle between the vectors  u and ~; by 13' the angle 
between the vectors  u' and v, by 81 the angle be tween the vectors u and u ' ,  
and by 82 the angle be tween the vectors  u and (u~. u2, -u3 ) .  We can calculate 
the probabil i t ies  to obtain the different possible  ou tcomes  for the measuremen t  
e~,.,u,. As the probabil i ty  to become  a state P,,,u' in the measurement  e~..,., 
we have  

1 
P l.,,.¢.,,.,,' - 2 

1 

4 

1 
P l,v.v'.u '.u : -~ 

=! 
2 

1 + cos 13 1 - c o s S i  + 
2 2 

1 81 
(1 - cos  81) = ~ sin g-~- 

1 + cos 13' 1 - cos81  

2 2 

sin 2 8_2 
2 

1 1 - c o s 1 3  1 - c o s 8 1  

2 2 2 

1 1 - cos 13' 1 - c o s  8 ,  + 
2 2 2 

~=(o,o,O ~ = ~ , , , , , ~ )  

-~=(o,o,-o 
Fig. 3. Illustration of the measurements e~¢ on the joint system in a state described as 

~ = (I/,~)(~,o+ ~ ~,o_ + ~,o ® ~o). 
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and thus, as already announced, the order of e,, and e., has no importance. 
For the probability to become a state p,,,,,, in the measurement e.,,,,,,, we have 

1 1 + cos 13 1 + cosB2 1 1 - cos 13 1 + cosB2 
P2,~,,¢,~..' 2 2 2 + 2 2 2 

1 1 62 
= ~ (1 + c o s  ~,~) = ~ c o s  2 -~- 

Analogously, we find the other probabilities. If we parametrize the coordinates 
of  u as (cos a sin 13, sin c~ sin [3, cos 13) and of  u' as (cos cd sin 13'. sin ~'  
sin 13', cos 13'), we find 

COS 81 = 

COS ~2 = 

(cos ~ sin 13, sin a sin 13. cos 13) 

X (cos ~ '  sin [3'. sin a '  sin 13'. cos 13') 

cos(a - a ' )  sin 13 sin 13' + cos 13 cos 13' 

(cos a sin 13, sin cx sin 13, cos 13) 

× (cos a '  sin 13% sin a '  sin [3% - c o s  13') 

cos(a - a ' )  sin 13 sin [3' - cos 13 cos 13' 

Thus, this justifies the double choice of  these notations [according to equations 
(16) and (17)]. If we compare the expressions for Pi,v.v'.u,.', Pt,v.¢.-..~', 
Pl.v,,,',..-u', PI,~,¢.-,,.-,, ' ,  P2.~,¢.,,.,,', P2,~.,,'.-~..', P2.~,¢.~,-u', and P2,,.¢,-,, .-, , '  with 
equations (10)-(13),  we find that the measurements el .... , are representations 
of measurements on a quantum entity in a antisymmetric superposition state 
Pl, and that the measurements e2,..., are representations of  measurements on 
a quantum entity in a symmetric superposition state Pv We remark that all 
this means that the superposition states 0~ and 02 can also be represented in 
S × S, both by the same two points (0, 0, 1) and (0, 0, - 1), if we introduce 
correlations of the second kind. 

4. M O D E L  S Y S T E M S  FOR S O M E  O T H E R  S U P E R P O S I T I O N  
STATES 

In this section we present models of  two other superposition states. 
Clearly, from a quantum mechanical point of  view, they have no real meaning. 
But. as already mentioned in the introduction, from a structural point of view. 
they are worth noticing. We consider the states P3 and p4 represented by the 
following vectors: 
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1 , o  ,1,3 = ~ (q,o ® , o  _ ® ,o )  (14) 

1 +o 04 = ~ ( ,o  ® , o  + ® ,% (15) 

We denote the probabilities to obtain certain outcomes in an analogous way 
as we did in the previous section. If we introduce the notations 

cos g3 = cos (a  + ~ ' )  sin 13 sin 13' - cos [3 cos 13' (16) 

cos 84 = cos(or + ec') sin 13 sin 13' + cos 13 cos 13' (17) 

we easily find (along the same lines as the calculation in the previous section) 

p~3:~+,~.13, = p3,3:~_.%,.ty 1 sin2 83 5- (18) 

, ) P~3;~+' "]'Iy = P~3;~-',~ "13' = ~ cos 2 (19) 

p~d;+~.~,ly = p~4:~;~_,,l 3, = I cos2 84 (20) 
2 2 

1 84 (21) 

Again we consider two points v and - v  located on a sphere with respective 
coordinates (0, 0, 1) and (0, 0, - 1 ) .  We introduce the measurement  e3,u. ", in 
the same way as el .... , by replacing v' = ( - u l ,  - u 2 ,  - u 3 )  by v' = (ub - u 2 ,  
-u3) .  We introduce e4...., by replacing v' = ( - u t ,  - u z ,  - u 3 )  by v' = (ub 
- u z ,  u3). Denote  by 83 the angle between the vectors u and ( - u b  u2, u3) 
and by 84 the angle between the vectors u and (u~, -u2 ,  u3). We have 

_ 1 t + cos 13 1 - c o s g 3  1 1 - cos 13 1 - c o s g 3 _  1 sinZg3 
P3,v,v',u.u' 2 2 2 + 2 2 2 2 2 

_ 1 1 + cos 13 1 + cos ~4 1 1 - cos 13 1 + c o s  8 4 _ 1 ~4 
P4,v.v',u,u" 2 2 2 + 2 2 2 2 c°sz 

and analogously, we find the probabilities for  the other outcomes.  If  we 
parametrize the coordinates o f  u as (cos a sin 13, sin ot sin 13, cos 13) and o f  
u' as (cos a '  sin 13', sin a '  sin 13', cos 13'), we find 

cos 83 = (cos a sin [3, sin ot sin [3, cos 13) 

× (cos c~' sin [3', - s i n  a '  sin 13', - c o s  13') 

= cos (a  + a ' )  sin [3 sin [3' - cos 13 cos [3' 
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cos 84 = (cos a sin 13, sin a sin 13, cos 13) 

× (cos a '  sin [3', - s i n  a '  sin 13', cos 13') 

= cos(a + c~') sin 13 sin 13' + cos 13 cos [3' 

which completes the proof of the equivalence. 

5. A MODEL SYSTEM FOR A SPIN-1 QUANTUM ENTITY 

This model system has been introduced in Coecke (1995a,b). Here we 
only describe the model system. For proofs and details we refer to these two 
previous publications. 

We denote a measurement characterized by the Euler angles a,  13, ~ as 
e~.~.v (in the sense as in the case of the spin-l/2 entity of Section 2). If the 
initial state of the entity corresponds to a spin quantum number s = + 1, we 
denote it a s p °  I f s  = 0, we denote it asp°,  and i f s  = - 1 ,  a s p ° .  We 
represent pO by the vector 4 ° = (1, 0, 0) ~ C 3, p0 by t~ ° = (0, 1, 0) E C 3, 
and pO_ by t~ °_ = (0, 0, 1) E C 3. For the measurement e,~.13,~ denote the 
eigenstates respectively by p.?.13, pg.l~, and p~_'~. We define the following two 
subsets of the set of coherent spin states [for more details we refer to Aaberge 
(1994) and Coecke (1995a)]: 

~+ = {p?_.131 c~ ~ [0, 2"rr], 13 ~ [0, 7]} (22) 

~0 = {p~.13 I c~ E [0, 2rr], 13 E [0, "rr]} (23) 

The set of all coherent spin-1 states is ~ = E+ N E0. If p~_.13 E ~+, we 
represent this state by two identical points in S (one point of S X S) with 
coordinates (cos a sin 13, sin c~ sin [3, cos [3). If p~'~ E ~0, we represent this 
state by two points in S with respective coordinates (cos a sin 13, sin c~ sin 
13, cos 13) and ( - c o s  a sin 13, - s i n  a sin 13, - c o s  13). 

Suppose that the states of  the model system can be represented by the 
same subset of S × S as we used in the previous section for the representation 
of the coherent states of a spin-1 quantum entity. A state represented as two 
identical points on the sphere with coordinates v will be denoted as P~.v, and 
a state represented as two diametrically opposite points with coordinates v 
and - v  as Pv.-~. We choose a set of coordinates such that v = (0, 0, 1). We 
define a measurement e, on the system in a state p~:~ in the following way: 

• We consider the system as a joint system of two separated spin-l/2 
quantum entities in a state Pv. 

• On both entities perform a measurement with eigenstates p,  and p_,. 
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,,=(o,o,1) 

, ,=(~  , ,~ , ,~ ) 

~ '=(~ , ,~ , -~  ) 

-v=(o,o,-o 
Fig. 4. Illustration of the e. measurements on the model system in a state Pv,-,. In this 

illustration, the black dots represent the position of 5°~. 

We define the measurement e. on the system in a state P-v,v in the following 
way (Fig. 4): 

• We consider the system as a joint system of  two spin-1/2 quantum 
entities that are entangled, one of  them in a state pv, the other in a 
state p_ ~. 

• On one of these two entities, which we denote as 901, we perform a 
measurement with eigenstates p .  and p_. .  Let u = (ul, u2, u3). If, as 
a consequence of  this measurement,  we obtain a state p .  for 90~. then 
the state of  the other entity (denoted as 902) changes to Pv', where v' 
= (u~, u2, -u3) .  I f  we obtain a state p _ .  for 9°1, then the state of  902 
changes to Pv'. 

• We perform a measurement with eigenstates p .  and p_ .  on 902. 

There are three possible outcome states for e.: p~.=, P-.,-u,  or p_,,,.. 
Denote by 13 the angle between the vectors u and v. We can identify the state 
p~,v with the state pO ~ El of  a spin-1 quantum entity, the state p,._~ with 
the state p0 E El, the state p.,~ with the state p?.,13 ~ El, and the state p. ,_.  
with the state p~.13 E El. As proved in Coecke (1995a), we find the same 
transition probabilities for the model system as for a spin-1 quantum entity. 
Thus, as in the case of  the measurements on entities in superposition states, 
all states are represented in S × S. Moreover, since the collections of  possible 
initial and outcome states are the same, we can consider consecutive measure- 
ments within this model system. 

6. D I S C U S S I O N  

Aerts (1991) shows with a model system that the specific probabilistic 
structure that arises during measurements on entities in a singlet state can 
be understood as due to the presence of  correlations of  the second kind in 
these measurements. In all the model systems introduced in this paper, we 
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can also identify these correlations of the second kind: the specific kind of 
correlation that induces a transition of  the points of  5~2 depends on the 
outcome of  the measurement on b°l; since this outcome does not exist before 
the measurement is actually performed, the correlation is created during 
the measurement. 

The singlet state is a new state which is not contained in ~ ( C  2) × ~ ( C  2) 
[~(X) are the rays of X], but in ~ ( C  2 ® C 2) [we remark that ~ ( C  2) X ~ ( C  2) 
are the product states of ~ ( C  z ® C2), i.e., the states that correspond with 
two separated spin-1/2 quantum entities]. In the model system introduced by 
Aerts (1991), the singlet state is no longer represented in ~ ( C  z) × ~(C2), 
i.e., no longer represented as a couple of  points on a sphere, but it is represented 
as two identical points in the middle of  the sphere (Aerts, 1991). Still, as we 
showed in this paper, if we introduce correlations of  the second kind in the 
measurements, this new state (and also the other superposition states that we 
considered), which does not correspond to a product state in ~ ( C  2 ® C2), 
can be "represented" as a product state. Moreover, the same counts for the 
spin-1 model. The set of all coherent spin-1 states cannot be embedded in 
~ ( C  2) x ~(C2), but is a subset of ~(C3). Since ~(C 3) is a subspace of ~ ( C  2 
® C2), we find new states in ~ ( C  2 ® C 2) that are not contained in ~ ( C  2) 
x ~(C2), and this is again due to the presence of  correlations of  the second 
kind in the measurements. Thus, from a mathematical point of  view, one 
sees that instead of  "extending" the state space of  a system by applying larger 
representation spaces for the description of  joint systems, z one can as well 
introduce correlations that are created during the measurement. From a physi- 
cal point of view, all this leads to a distinction between the description of 
the actual state of a joint system in Piron's sense 3 (which leads to a tensor 
product representation), and a description in which we focus on the possible 
states of the individual entities in the joint system and which requires the 
introduction of  correlations of the second kind to express the entanglement 
of  the entities of  which the joint system consists. Thus, we can introduce a 
different approach toward the description of  joint systems: i fa  joint system 
consists of  two separated entities, the states are represented by the Cartesian 
product of the state spaces of these entities; if due to the interaction between 
the measurement apparatus and the joint system, correlations of  the second 
kind are created, new states occur, i.e., new kinds of behavior of the entity 
during the measurement occur. But, as already mentioned above, these new 
states (i.e., these new ways of behavior of the entity during the measurement) 
are still "represented" within the Cartesian product. 

z In the case of quantum mechanics this means the introduction of the tensor product as a tool 
for the description of joint systems. 

3 A description in which we incorporate every possible potential behavior of the entity during 
every possible measurement. For more details see Piton (1976). 



Superposition States 2351 

Of course, the argumentation put forward in this paper is of a somewhat 
metaphorical nature, and thus harder mathematical evidence in support of the 
above ideas is required. Nonetheless, we think that the examples introduced in 
this paper explain these ideas in a more transparent way than a purely 
mathematical treatment would do. A paper on a purely mathematical treatment 
is in preparation. 
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